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In this paper, the Transversal Method of Lines (TMOL) or Rothe’s method is
employed to obtain analytical expressions of simple form for the unsteady one-
dimensional heat conduction in a slab. Initially, the slab is maintained at a uniform
temperature, and then a uniform heat flux is applied to its surfaces. Implementation
of TMOL generates a sequence of adjoint ordinary differential equations, where the
spatial coordinate is the only independent variable and the time becomes a parameter.
In spite of the anticipated expectations that the semi-discrete solutions produced by
TMOL would yield accurate temperature responses for short times only, detailed
calculations demonstrate the opposite trend. Surprisingly, the temperature results
associated with two equal time steps are excellent not only for short times, but
during the entire heating period.c© 1998 Academic Press

1. INTRODUCTION

The method of separation of variables, the Green’s function procedure, and the integral
transform technique are the most commonly used analytical schemes for the analysis of
unsteady heat conduction in regular bodies [1–3]. The solution produced by any of these
three methods consists on convergent infinite Fourier-type series. In general, the use of the
method of separation of variables is not convenient whenever a parabolic partial differential
equation (PDE) and/or the boundary conditions involve non-homogeneities. In contrast, both
the Green’s function procedure and the integral transform technique operate satisfactorily
and provide alternative approaches for the analytical solutions of these non-homogeneous
problems.
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One important feature of the solutions by Fourier series is that they converge very slowly
for small values of time, implying the necessity of retaining a large number of terms in
the series to achieve good accuracy in the local temperature calculations. Because of this
restriction, Fourier series solutions are not convenient for numerical computations involving
short times [2].

Usually the above cited obstacle is overcome by using the Laplace transform to redefine
the infinite series in terms of some integral functions that converge fast for short times,
specially those functions commonly present in heat conduction solutions involving semi-
infinite domains, e.g., the error function. Sometimes, the series route is discarded and the
semi-infinite body solution by itself is employed to estimate the early transient behavior.
However, in most cases the resulting expressions are difficult to evaluate and tables and/or
graphics are needed to estimate the desired temperature values. Moreover, the integrals and
derivatives of these expressions, which are frequently needed in analyses, are cumbersome
to manipulate. Another important aspect that needs to be addressed is the range of validity
of these type of approximate solutions which seemingly has not been studied in detail
yet.

For certain problems in applied physics and engineering that require only late transient
behavior, the resulting infinite series solution is frequently truncated and reduced to its mini-
mum expression, giving the so-called one-term solution or long-time solution, so popular
in the heat conduction literature because of its simplicity [2, 3]. Understandably, there is no
homologous simple one-term solution for short times.

With this background in mind, the central objective of this paper is to propose an alter-
native semi-analytic technique to supplement the long-time solution with simple formulas
that permits fast and reliable calculations of the temperature response of regular bodies for
short times. Parallel to this, the domain of validity of the proposed approach as well as other
widely used short-time approximate solutions are also studied exhaustively for the case of
a slab.

The Transversal Method of Lines (TMOL) or Rothe’s method [4] seems to be an adequate
technique to achieve our goal. In this paper, TMOL is applied to the one-dimensional, initial
boundary value problem (IBVP) of heat conduction in a slab subjected to iso-heat flux at the
surfaces, i.e., Neumann boundary condition. By virtue of this method the time-derivative in
the parabolic PDE is discretized with a standard, first-order time-accurate, finite-difference
formulation. The original PDE is therefore replaced by an adjoint ordinary differential
equation (ODE) together with the imposed boundary conditions, where the time acts as a
given parameter. As a result of this, the temporal-spatial computational domain is converted
into a reduced spatial computational domain. Then, under these premises the integration of
the resulting two-point boundary value problem (2-BVP) at each time level may be carried
out analytically without difficulty.

Our article is organized as follows. In Section 2, we present the mathematical formulation
of the problem. An outline of how the method of separation of variables is applied to obtain
the exact solution of the problem is shown in Section 3. This exact solution is used later as
a baseline solution for comparison purposes. Some popular approximate techniques able to
compute the transient behavior of the problem are considered in Section 4. In Section 5, we
present the proposed methodology and its variations. Here TMOL is implemented to derive
simple solutions which are valid, in principle, for short times. To show the applicability of
the proposed formulas, in Section 6, we report some results in tabular and graphical form.
Finally, in Section 7 we give our concluding remarks.
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FIG. 1. Schematic view of the physical system.

2. MATHEMATICAL FORMULATION

A slab of thickness 2L possesses a uniform temperatureTi initially, t ≤ 0. At t = 0, an
uniform heat flux,qw, is suddenly imposed to both surfaces of the slab, i.e.,x = ±L (see
Fig. 1). The time-dependent, one-dimensional heat conduction equation, along with the
initial and Neumann boundary conditions, is expressed as

∂φ

∂τ
= ∂2φ

∂ X2
in 0 ≤ X ≤ 1, τ > 0, (1)

φ = 0 for τ = 0, 0 ≤ X ≤ 1, (2)

∂φ

∂ X
= 0 at X = 0, τ > 0, (3)

∂φ

∂ X
= 1 at X = 1, τ > 0. (4)

The assumption of materials whose thermo-physical properties are not affected by tempe-
rature leads to the adoption of the dimensionless variables

φ = T − Ti

Tc
, X = x

L
, and τ = αt

L2
, (5)

where the characteristic temperature is denoted byTc = qwL/k.

3. EXACT SOLUTION

In this section, we briefly discuss the method of separation of variables which is commonly
used to obtain the exact solution of the unsteady heat conduction problem. This exact solution
is later employed for comparison purposes.

3.1. Method of Separation of Variables

The dimensionless temperature distribution,φ(X, τ ), via the method of separation of
variables, will be considered as the baseline solution. The superposition of solutions given
by the relations

φ(X, τ ) = f1(X, τ ) + f2(X) + f3(τ ), (6)

can eliminate the difficulty arising from the non-homogeneous boundary condition,
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Eq. (4). Thus, the analytical full-series (FS) solution is taken directly from the textbook by
Arpaci [2]

φ(X, τ ) = τ − 1

2

(
1

3
− X2

)
− 2

∞∑
n=1

(−1)n

µ2
n

cos(µn X)e−µ2
nτ , (7)

whereµn = nπ, n = 1, 2, 3, . . . , ∞, are the eigenvalues.
An important quantity related to the calculation of the total heat transfer rate and the bulk

thermal energy is the dimensionless mean temperature

φ̄(τ ) =
∫ 1

0
φ(ξ, τ ) dξ = τ, (8)

which presents its usual unitary slope.

4. TRADITIONAL APPROXIMATE TECHNIQUES

In this section, we examine the one-term-of-series (OTS) solution, the Laplace trans-
form short-time (LTST) solution, and the semi-infinite body (SIB) solution which are also
employed later for comparison purposes. The first approach is very popular among heat
transfer analysts because it permits us to obtain long-time solutions easily. In contrast, the
other two approaches are the most frequently recommended in the specialized literature to
get short-time solutions.

4.1. One-Term-of-Series Solution

The pressing characteristic of Fourier series, like Eq. (7), for purposes of numerical
evaluation of local temperatures, is that they tend to converge rapidly for very long times
allowing the retention of only one term, e.g., OTS solution,

8(X, τ ) = τ − 1

2

(
1

3
− X2

)
+ 2

π2
cos(π X)e−π2τ , (9)

where, despite the truncation, the corresponding mean temperature8̄(τ ) still yields the
correct magnitude

8̄(τ ) =
∫ 1

0
8(ξ, τ ) dξ = τ, (10)

regardless of the value ofτ . This expression is indicative of the thermal energy of the
system.

In passing, we should mention that, contrarily to their nice long-time behavior, Fourier
series show severe divergence patterns for short and even moderate times when the series
is truncated to few terms. This situation is so abnormal that the numerical evaluation of the
one-term truncated series, i.e., Eq. (9), does not meet the initial condition. In fact, for very
short times the evaluated local temperatures deviate from the initial condition drastically.
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4.2. Laplace Transform Solution

The Laplace transform is frequently employed to obtain solutions for small levels of
time. Regardless of the more advanced mathematical knowledge required, the basic concept
behind this type of short-time solution technique is very simple. In fact, it amounts to an
appropriate series expansion of the transformed solution in terms of the Laplace parameter,s.
Based on the definition of Laplace transforms, it can be argued that the productsτ must be
finite [2]. This implies

shortτ → larges,

largeτ → shorts.

Focusing on short times, i.e., large values ofs, the resulting anti-transformed series solution
is usually expressed in terms of combinations of the complementary error function and its
integrals. For the slab, the first term of the LTST series can be taken from the textbook by
Luikov [3],

8(X, τ ) = 2
√

τ

(
I erfc

(
1 − X

2
√

τ

)
+ I erfc

(
1 + X

2
√

τ

))
, (11)

where erfc(z) is the complementary error function, given by

erfc(z) = 2√
π

∫ ∞

z
e−ξ2

dξ,

and I erfc(z) = ∫∞
z erfc(ξ) dξ , is the first integral of erfc(z). The latter can be computed

by the recurrence relation

I erfc(z) = e−z2

√
π

− zerfc(z).

After some calculations, the corresponding mean temperature is found to be

8̄ = τ + 2

√
τ

π
e−1/τ − (2 + τ) erfc

(
1√
τ

)
, (12)

where the last two terms can be interpreted as a measure of the error in the prediction of
the bulk thermal energy of the system as time progresses. Observe that asτ → 0, the LTST
solution satisfies the exact result, i.e.,8̄(τ ) → φ̄(τ ) = τ .

4.3. Semi-Infinite Body Solution

Because of its inherent simplicity, the SIB solution is also often employed to compute
the evolution of temperature for small values of time. Essentially, its applicability relies
on the fact that the thermal behavior of simple bodies resemble the thermal response of a
semi-infinite body asτ → 0. However, it is expected that the range of validity of the SIB
formulation for finite bodies should be restricted to very short times, when the effect of
the other boundary condition has not been felt yet. The formula presented in Luikov [3],
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involving the first term of the LTST solution, takes the form

8(X, τ ) = 2
√

τ I erfc

(
1 − X

2
√

τ

)
. (13)

Similarly, following the same procedure delineated for the LTST formulation, the corre-
sponding mean temperature can be expressed by

8̄(τ ) = τ +
√

τ

π
e−1/4τ −

(
1

2
+ τ

)
erfc

(
1

2
√

τ

)
, (14)

where again the last two terms account for a deflection from the correct global thermal
energy of the system, i.e.,̄8(τ) = τ , asτ increases.

5. TRANSVERSAL METHOD OF LINES

In this section, we propose a hybrid technique known as the Transversal Method of Lines
(TMOL) or Rothe’s method [4] to estimate the transient temperature response of simple
bodies subjected to uniform heat flux at the surface. It will be shown that, depending of the
admissible error in the TMOL-type approximate solutions, the formal short-time range of
validity of the semi-analytical formulas derived in this section can be safely extended to the
entire heating period.

The Transversal Method of Lines (TMOL) [4] will be applied now to the parabolic PDE,
Eq. (1). Accordingly, the temporal derivative will be replaced by a two-point backward
finite difference formula while leaving the space derivative in its continuous form. This
procedure converts Eq. (1) into the following differential-difference equation

8(X, τ ) − 8(X, τ − 1τ)

1τ
= ∂28

∂ X2
(X, τ ), (15)

which is a first-order time-accurate consistent representation of Eq. (1). Conceptually, it
may be realized that the consistency of the above semi-discrete equation guarantees its
equivalence with Eq. (1) in the limit1τ → 0 [5]. Here, the time-truncation error is given
by

1τ

2

∂28

∂τ 2
(X, σ ), with σ ∈ (τ − 1τ, τ).

A more important question that needs to be answered belongs to the convergence of the
solution of the approximate Eq. (15) to the exact solution of the original PDE, Eq. (1). This
statement may be rephrased as follows: Under which conditions the solution of Eq. (15)
approximates the exact solution of Eq. (1) [6], namely Eq. (6), as1τ → 0? Some mathe-
matical aspects of the method have been already extensively studied, see, for example,
[7]. Nevertheless, we present some practical results regarding the convergence of the error
associated with the solution in Section 6.

Next, consider the crudest attainable TMOL representation, i.e., one-step TMOL
(1-TMOL). Literally, this simplest TMOL scheme jumps from the initial condition(τ = 0)

to the specified timeτ when the solution is needed. Then, recognizing that for this stage
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the time step1τ = τ and introducing the initial condition, i.e., Eq. (2), into Eq. (15), leads
to the following adjoint, second-order homogeneous ODE

d28

d X2
− m2

18 = 0. (16)

Here,m2
1 = 1/τ > 0, acts as some sort of thermo-geometric parameter which varies inversely

proportional with the dimensionless time step,τ . From a physical standpoint, attention must
be paid to the fact thatm2

1 = L2/αt accounts for the thermal diffusivity of the material,α,
the semi-thickness of the slab,L, and more importantly the actual time of calculation,t .

Moreover, Eq. (16) has to be supplemented with the same boundary conditions associated
with the original PDE, i.e., Eqs. (3)–(4), rewritten as

d8

d X
= 0 at X = 0, (17)

d8

d X
= 1 at X = 1. (18)

In view of the foregoing, 1-TMOL has transformed the original IBVP into a simpler two-
point boundary value problem (2-BVP) whose solution can be easily obtained analytically.

From a different optic, it is interesting to underline that the mathematical reformulation
given by Eq. (16), together with the boundary conditions, Eqs. (17)–(18), is analogous to
the mathematical description of the conductive-convective heat transfer from a straight fin
of uniform cross section to a surrounding fluid. To comply with the analogy, this reference
fin must have constant thermophysical properties, imposed heat flux at the base, and no heat
loss through its tip.

Next, the analytical solution of the 1-TMOL formulation, Eqs. (16)–(18), may be written
immediately as

8(X, τ ) = C(m1) cosh(m1X), (19)

whereC(m1) takes the form

C(m1) = 1

m1 sinh(m1)
,

and obviously the time dependence of the solution is manifested through the parameter
m1 = m1(τ ).

Another equally simple TMOL scheme that could be explored now is the one that reaches
the solution atτ , implementing two steps of equal size, i.e.,τ/2. Utilization of the same
procedure as above results in the set of equations

8(X, τ/2) − 8(X, 0)

τ/2
= ∂28

∂ X2
(X, τ/2),

8(X, τ ) − 8(X, τ/2)

τ/2
= ∂28

∂ X2
(X, τ ),

which has to satisfy the same boundary conditions Eqs. (17)–(18). Next, inserting the initial
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condition Eq. (2), the first equation reduces to the homogeneous ODE,

d28

d X2
− m2

28 = 0,

beingm2
2 = 2/τ > 0. Accordingly, Eq. (19) satisfies the above ODE subjected to Eqs. (17)–

(18), but in terms ofm2 instead. Introducing this information into the second equation, we
generate the following linear non-homogeneous ODE,

d28

d X2
− m2

28 = −m2
2C(m2) cosh(m2X). (20)

Within the framework of the two-step TMOL (2-TMOL),8(X, τ ) is represented by the
analytical solution of Eq. (20) subjected to the boundary conditions Eqs. (17)–(18), yielding

8(X, τ ) = A(m2) cosh(m2X) − B(m2)m2X sinh(m2X), (21)

where for concisenessA(m2) andB(m2) have been defined as

A(m2) = B(m2)(3 + m2 cotanh(m2)) and B(m2) = C(m2)

2
,

respectively. From the perspective of numerical analysis, it is important to realize that
Eq. (21) still constitutes a first-order time-accurate representation ofφ(X, τ ).

At this point, a different avenue for improvement will be pursued. Because Eqs. (19)
and (21) tacitly set forth semi-discrete solutions ofφ(X, τ ) at two different time-steps,
namely,τ/2 andτ , we can improve the formal accuracy of the procedure by performing
a Richardson Extrapolation (RE) [5]. Skipping the derivation for clarity, the end result is
written as

8(X, τ ) = 2A(m2) cosh(m2X) − 2B(m2)m2X sinh(m2X) − C(m1) cosh(m1X). (22)

Finally, the expression for the mean temperature distribution may be computed from any of
the pertinent solutions, Eqs. (19), (21), or (22). Lemma A.1 (see Appendix A), ratifies that
all of these equations lead to the same exact answer, i.e.,

8̄(τ ) =
∫ 1

0
8(ξ, τ ) dξ = τ, (23)

which indicates invariance with respect to the level of approximation selected. An explana-
tion of this unexpected or surprising accurate prediction of the mean temperature is given in
the lemma: along with its striking behavior, the mean value of the time-truncation error is
zero. Owing to the peculiar characteristics of TMOL, the integral of the deviations formed
between the approximate and the exact temperature distributions cancel out, yielding the
correct answer.

6. DISCUSSION OF RESULTS

In this section, we present some results pertaining to the comparative performance of the
proposed formulas in terms of the principal thermal variables used in thermal analysis and
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design, i.e., the center, surface, and mean temperature distributions, the equivalent “plug-
flow” Nusselt number distribution, and the time required to attain steady state conditions.
Also, we present an exhaustive analysis of the errors inherent to the approximate solutions
and relying on the Grigull and Sandner criteria [8] we determine their corresponding region
of validity.

6.1. Temperature Distribution

The dimensionless temperature distributions computed by the various methods are com-
pared with the exact solution (the baseline solution) in Figs. 2–5. These two set of figures
are similar, the sole exception lies in the range of the abscissas. Figures 2 and 4 may
be conceived as a close-up of Figs. 3 and 5, respectively, in the lower left corner. For ins-
tance, in Figs. 2 and 4 the abscissaτ extends from 0 to 0.15 in order to capture the details
of the sensitive temperature evolution in the early heating stages that are inherent to each
method, while Figs. 3 and 5 cover heating periods that extend up toτ = 1.

Inasmuch as the exact full-series solution (FS) is concerned it has been carefully generated
by evaluating the infinite series in Eq. (7) with a symbolic mathematic code. To guarantee

FIG. 2. Center, surface, and mean temperature distributions obtained by using traditional approximate solu-
tions during the early transient period.
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FIG. 3. Center, surface, and mean temperature distributions obtained by using traditional approximate solu-
tions during the entire transient period.

the minimum accuracy of 10−7 in the local temperatures at any position and time a maximum
of 1300 terms has been retained in the series. For the sake of brevity, two locations inside
the slab have been chosen to report the temperatures, namely the center (X = 0) and the
surface (X = 1). At any level of time, the center and surface are respectively associated
with the minimum and the maximum temperatures. In addition, the mean temperature
distributions with its patented slope of one has been plotted. This global quantity is important
because it provides a measure of the bulk thermal energy absorbed by the body within a
fixed period of time.

The performance of the traditional approximate solution methods tested, such as OTS,
LTST, and SIB, was predominately consistent with expectations from mathematical and
physical arenas. The most salient features of each of them have been delineated in the
forthcoming paragraphs.

First, we observe in Figs. 2–5 how the OTS (termed the long term solution) exhibits good
quality for the center and surface temperatures beyondτ = 0.08. Forτ < 0.08, both curves
go astray even violating the physics of the problem. The center and surface temperatures at
τ = 0 are overpredicted evidencing their inability to retrieve the initial condition. In contrast,
the mean temperature overlaps with the exact straight line at all times. This perfect match
indicates in a convincing manner that at other locations (different than the center and the
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FIG. 4. Center, surface, and mean temperature distributions obtained by using TMOL-type approximate solu-
tions during the early transient period.

surface) the temperatures at early times have to attain negative values for compensatory
effects.

Second, the LTST approach gives reasonable estimates for the center and surface tempe-
ratures for short times in proximity of 0.7 and 0.4, respectively. These solutions detach
from the exact ones for times exceeding these respective values. For larger times, the center
temperature deviations grow much slower than their counterparts for the surface temperature
deviations. For instance atτ = 1, the former is about half the latter. More or less, the same
pattern prevails for the mean temperature and the agreement with the exact straight line is
adequate for intermediate values confined to 0< τ < 0.5. Once the upper time is surpassed
the approximate curve for the mean temperature starts to deviate slightly.

Third, the center and surface temperatures as predicted by SIB are accurate for short times
of 0.07 and 0.3, respectively. The solutions break down dramatically for times exceeding
these respective values. As time increases, the center temperature deviations grow more
rapidly than their counterparts for the surface temperature deviations. For instance atτ = 1,
the former is about twice the latter. These trends are consistent with the physical nature
of SIB and are opposed to the ones observed for the LTST. Literally, the pattern displayed
for the LTST prevails for the mean temperature here showing an adequate agreement for
τ < 0.5.
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FIG. 5. Center, surface, and mean temperature distributions obtained by using TMOL-type approximate solu-
tions during the entire transient period.

The traits of the contemporary approximate solution methods, namely 1-TMOL,
2-TMOL, and RE were somewhat surprising. Conceptually, the outcome of these solu-
tions are expected to give accurate answers for short times in conformity with the first-order
errors inherent to the finite-difference formulation in time. Figures 4 and 5 display the center
and surface temperatures produced by 1-TMOL which are always bounded by the exact
temperatures curves, i.e., the approximate surface temperature lying below the exact sur-
face temperature as opposed to the approximate center temperature which remains above
the exact center temperature. At both locations the deviations tend to grow mildly with
time, resembling two thin curvilinear wedges. The temperature calculations for the center
and the surface produced by a refined 2-TMOL are remarkably more accurate than those
associated with a crude 1-TMOL. Both TMOL procedures share errors of first order. An
inspection of the corresponding curves attests that the magnitude of the deviations are cut
in half irrespective of the time level.

It is striking that the mean temperatures calculated by 1-TMOL, 2-TMOL, and RE (com-
bining 1-TMOL and 2-TMOL) supply straight lines that perfectly coincide with the exact
straight line that emerges from evaluating 1300 terms in the infinite series, the so-called FS.

The temperature results generated by the more refined procedure, the RE, will be dis-
cussed next. The surface temperature predictions for the slab computed with the RE compare
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well with the FS results in its entirety. For this configuration, the center temperatures expe-
rienced diminutive discrepancies. The mean temperature distributions computed with the
RE collapse to the exact temperature distributions for all times.

Considering the first-order time-accuracy of the 1-TMOL and 2-TMOL expressions in
conjunction with the second-order time-accuracy of the RE relations, it should be antici-
pated that the behavior should be accurate for short times only. Surprisingly, the matching
between the RE and the FS solutions is perfect in the entire time domain. Finally, as can be
corroborated in Lemma A.1, all TMOL-type solutions yield the exact value for the mean
temperature.

6.2. Equivalent Nusselt Number Distribution

We recognize the great similarity between unsteady heat conduction in solid bodies and
steady duct-flow heat convection. It can be shown that the mathematical formulation of
the unsteady heat conduction is identical to that of the thermally developing duct flow
with an uniform velocity profile (plug-flow). Hence, the heating period in unsteady heat
conduction is analogous to steady heat convection in the entrance region of a duct. Because
of this similarity, studying the equivalent Nusselt number history obtained in unsteady
heat conduction problems gives the Nusselt number distributions for the equivalent heat
convection process in a duct.

Accordingly, the definition for the equivalent local Nusselt number [9] is

Nueq(τ ) = 1

φ(1, τ )− φ̄(τ )
(24)

and its asymptotic equivalent value, Nu∞, corresponds to

Nu∞ = lim
τ→∞ Nueq(τ ). (25)

In particular for a slab configuration, Nu∞ = 3.
The equivalent Nusselt number distributions are presented in Figs. 6 and 7. In order to

facilitate the comparisons, the distributions have been separated in two parts. Figure 6 com-
pares the equivalent Nusselt number obtained by using the traditional approximate solutions
with the one given by the baseline exact solution (FS). Figure 7 shows the comparison of
the TMOL-type solutions and the FS solution.

Again the intrinsic tendencies of the traditional approximate solutions, OTS, LTST, and
SIB, are evidenced in Fig. 6. Here, it can be seen that the OTS curve (the long time solution)
coincides with the FS curve for large times(τ ≥ 0.1) and as time decreases the OTS curve
stays way below the FS curve. In contrast, the curves associated with the LTST and the
SIB solutions overlap the FS curve for short and intermediate times(τ < 0.1). Thereafter,
the LTST curve moves up sharply while the SIB curve moves down mildly in an almost
symmetrical fashion. These two asymptotic behaviors are counterproductive. As a side
comment, it should be added that the LTST solution is more accurate than the SIB solution
at the expense of dealing with a more complicated mathematical procedure which is coupled
with a more elaborate evaluation of the pertinent expressions.

As noted with the preceding discussion involving the TMOL-type relations for the local
and mean temperatures, the same patterns prevail for the estimation of the local equivalent
Nusselt numbers. Figure 7 indicates that the crudest 1-TMOL curve is the least accurate,
followed by the 2-TMOL curve. In both, maximum deviations occur in the vicinity of
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FIG. 6. Comparison of the equivalent Nusselt number distributions obtained by using the traditional approxi-
mate solutions.

τ = 0.2. At other times the deviations are uniform. The RE curve gives the best prediction
and the deviations from the FS curve are imperceptible to the scale of the graph. Literally
these well-behaved trends of the three TMOL schemes contrast markedly with the trends
corresponding to the OTS, LTST, and SIB solutions.

6.3. Time to Reach Quasi-Steady-State Condition

In this section, we compare the value of the dimensionless time required to reach a quasi-
steady-state condition computed by using the approximate solutions with the exact solutions
calculated by evaluating the full-series (FS). Notice that for most of the approximate solu-
tions studied here (which are formally valid for small values of time), the prediction of
the ending of the transient period could be considered out of order. However, we included
these results because they could be an indication of how well the approximate formulas
behave for moderate-to-long times.

Following the same analogy between unsteady heat conduction and internal duct flow
discussed previously, we defineτs as the dimensionless time required to achieve a value
of the local equivalent Nusselt, Nueq, equal to 1.05 of the asymptotic equivalent Nusselt,
Nu∞ = 3.
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FIG. 7. Comparison of the equivalent Nusselt number distributions obtained by using the TMOL-type ap-
proximate solutions.

The computed values ofτs are summarized in Table 1. As expected, the OTS formula
predicts an excellent estimate ofτs whereas LTST solution underestimatesτs. The opposite
response is found by using the SIB expression; it slightly overestimatesτs. Prediction of the
time to attain fully established conditions by using 1-TMOL and 2-TMOL is remarkably

TABLE 1

Prediction of the Quasi-steady-state Conditions

Slab

Method τs %

FS (Exact) 0.25806 —
OTS 0.25805 −0.004
LTST 0.21512 −16.641
SIB 0.26499 2.685
1-TMOL 1.30510 405.735
2-TMOL 0.53143 105.933
RE 0.27243 5.568
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overestimated. On the contrary, RE solution slightly overestimates the value ofτs with an
error always less than 5.6%.

6.4. Analysis of Error and Range of Validity

In order to put these unexpected responses of the TMOL-type solutions in perspective,
it is important to carry out a systematic study of the errors associated with the various
solutions. This study will lead to the subsequent definition of the regions of validity for the
different approximate formulas presented.

To the authors knowledge, the range of validity has been established only for the OTS
solution. In fact, Grigull and Sandner [8], tolerating an absolute error of about 0.01 in
φ(0, τ ) andφ(1, τ ), have pointed out that the one-term-of-series (OTS) solution of the
unsteady heat conduction equation with Robin boundary conditions is rigorously valid for
τ > 0.24 in the case of a slab.

To commence the analysis, we define the local error in the solution as the difference
between the approximate solution and the exact (FS) solution, i.e.,

ε(X, τ ) = 8(X, τ ) − φ(X, τ ), (26)

where8(X, τ ) represents the approximate solution andφ(X, τ ) corresponds to the exact
solution. In the present study, computing the percentages has been avoided because of the
very small numbers that intervene in the calculations.

The analysis of errors is performed in terms of the maximum norm (infinity norm) of the
error in the solution at a given timeτ . This is defined by

‖ε(·, τ )‖max = sup
0≤X≤1

|ε(X, τ )|.

Another illustrative quantity, the maximum value of the infinite norm of the error, defined
by

εmax = sup
τ≥0

‖ε(·, τ )‖max,

is also contemplated for comparative purposes. Notice thatεmax cannot be computed unless
‖ε(·, τ )‖max remains bounded forτ ≥ 0.

A graphical representation of the values of the maximum norm of the error in the solutions
produced by the different approximate formulas is presented in Fig. 8.

The OTS solution displays its typical behavior, i.e.,‖ε(·, τ )‖max tends to a maximum for
short times. Specifically, forτ > 0.05 the norm of the error for this approximate solution
decreases rapidly.

The errors for all the other approximate solutions initiate at zero forτ = 0 and increase
gradually. As expected, those errors associated with the LTST and SIB solutions increase
substantially asτ grows. The SIB solution is fairly accurate for small and moderate values
of time.

Turning the attention to the three TMOL-type solutions it may be seen that they share a
similar qualitative behavior. The norm of the error increases consistently to a maximum and
then declines rapidly to zero. For short times, the error of 2-TMOL is about half of the error
of 1-TMOL while the error of RE is one fourth of the error of 1-TMOL approximately.

Invoking the criteria of Grigull and Sandner [8], i.e., stipulating a maximum norm of the
error of 0.01, the region of validity of the approximate solutions can be easily computed.
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FIG. 8. Maximum norm of the error in the solution.

Our results are summarized in Table 2. We present also the maximum values of the infinite
norm of the error,εmax, over the heating period and the dimensionless values of time at
which they are attained.

In sum, it was found that for the unsteady heat conduction with Neumann boundary
condition (uniform heat flux at the surface) the region of validity of the OTS, the LTST, and
the SIB solutions are formallyτ > 0.04249, τ ≤ 0.42699, andτ ≤ 0.13172, respectively.

TABLE 2

Grigull and Sandner Criteria for the Slab

Slab

Method Range of validity εmax

OTS τ > 0.04249 0.13069 atτ = 0.00000
LTST τ ≤ 0.42699 unbounded
SIB τ ≤ 0.13172 unbounded
1-TMOL τ ≤ 0.00607 0.04779 atτ = 0.22050
2-TMOL τ ≤ 0.02181 0.02554 atτ = 0.20715
RE τ ≥ 0 0.00858 atτ = 1.08230
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On the other hand, 1-TMOL is formally acceptable forτ ≤ 0.00607. The correctness of the
2-TMOL formula improves remarkably with respect to the companion range of 1-TMOL.
Ordinarily, its adequacy is not sufficient to supplement the OTS solution for moderate
values of time meaning that 2-TMOL is perfectly valid forτ ≤ 0.02181. According to
Grigull and Sandner criteria [8], RE solution is adequate over the entire heating period.
From these results it is obvious that the RE formula, Eqs. (22), is appropriate to supplement
the simplistic OTS solutions for small to moderate values of time.

The maximum error,εmax, for the OTS solution reaches 0.13069 atτ = 0. In contrast,
no maximum error is ever attained for the LTST and the SIB solutions, simply because the
error continues to grow indefinitely withτ .

The 1-TMOL procedure yields a maximum error of 0.04779 atτ = 0.22050. Similarly,
the 2-TMOL approach reaches a maximum error of 0.02554 atτ = 0.20715. As pointed
out before, this maximum error attached to the 2-TMOL formula is roughly half of the
maximum error for the 1-TMOL formula. The infinite norm of the error for the RE reaches
a maximum of 0.00858 atτ = 1.08230.

Relying on the criteria of Grigull and Sandner [8], the LTST, the SIB, and the RE formulas
are acceptable ways to supplement the OTS solution.

Ultimately, to complete our error analysis we present some results in terms of the 1-norm
of the error in the solution. Accordingly, we defined it as

‖ε(·, τ )‖1 =
∫ 1

0
|ε(ξ, τ )| dξ.

This norm can be envisioned as a measure of the deviations in the local thermal energy
stored as computed by the different methods. Notice that if we drop the absolute value, this
formula reduces to the difference between the approximate and exact mean temperature
distributions,8̄(τ ) − φ̄(τ ).

Attention is now turned to Fig. 9 where results in terms of the 1-norm are plotted. Because
all norms are equivalent, the behavior is similar to those of Fig. 8. At this juncture, it should
be stressed that the importance of this figure lies in its ability to estimate the accuracy of the
different methods to predict the local thermal energy stored. Moreover, they also encompass
a more global measure of the performance of the different methods.

In addition, the two main characteristics of the TMOL-type methods are also shown here.
For this type of approach the norm of the error in the solution is bounded and, even more
important, for large values of time exhibits attractive declining patterns.

The reader should bear in mind that if a specific engineering application can stand the
maximum error predicted by the norms, the tedious evaluation of the series can be completely
replaced by a single evaluation of any of the TMOL-type formulas.

7. CONCLUSIONS

At the beginning, the principal objective of this comparative study was to explore a quick,
direct, and reliable computational procedure for the determination of the temperature-time
history for short periods of time within slabs heated by an applied heat flux at their surfaces.
The accuracy of the systematic calculations based on a Richardson extrapolation of the
first two TMOL solutions exceeded our expectations and convincingly demonstrated that
these algebraic solutions are not only adequate for short times, but they extend to the entire
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FIG. 9. 1-norm of the error in the solution.

time domain without imposing restrictions. TMOL left no doubt about its credentials as a
top contender method for solving the diffusion equation subjected to a uniform heat flux
boundary condition.

The simplicity exhibited by the implementation of TMOL along with its algebraic so-
lutions has been proven to be attractive to instructors of graduate courses on conduction
heat transfer. These attributes contrast with the full series solution, FS, and other equally
elaborate solution methods, like for instance the Laplace Transform solution, LTST, and
the semi-infinite body solution, SIB.

Although the temperature distributions for the infinite cylinder and the sphere have not
been presented explicitly here, it may be inferred that the tendency of the errors should be
similar to that found in the present case.

A. APPENDIX

Consider the following lemma,

LEMMA A.1. For a slab heated with a uniform heat flux (Neumann boundary condi-
tion), the solutions resulting from applying TMOL-type methods to the time-dependent,
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one-dimensional heat conduction equation always yield8̄(τ ) = φ̄(τ ). Moreover, for allτ ,
the integral of the time-truncation error over the spatial domain is zero.

Proof. Consider a generalized version of Eq. (1)

∂φ

∂τ
= ∂2φ

∂ X2
+ c

X

∂φ

∂ X
in 0 ≤ X ≤ 1, τ > 0,

wherec is a geometric parameter, e.g.,c= 0, 1, and 2, for slab, cylinder, and sphere. Integrate
both sides of the equation over the entire volume, e.g.,

(1 + c)
∫ 1

0

∂φ

∂τ
ξ c dξ = (1 + c)

∫ 1

0

(
∂2φ

∂ξ2
+ c

ξ

∂φ

∂ξ

)
ξ c dξ. (27)

Applying the Leibnitz theorem to both sides of the equation and introducing the boundary
conditions, Eqs. (3)–(4), we obtain

dφ̄

dτ
= (1 + c)Xc ∂φ

∂ X

∣∣∣∣1
0

= (1 + c). (28)

So far, this relationship is exact.
When we use TMOL-type semi-analytical solutions we have to substitute the LHS of

Eq. (1) by a two-point backward finite difference approximation, e.g.,

∂φ

∂τ
= φ(X, τ ) − φ(X, τ − 1τ)

1τ
+ ϑ(X, τ, 1τ), (29)

where,ϑ is the time-truncation error. Inserting the above formula into Eq. (27), neglecting
the truncation error, and performing the integration results in

8̄(τ ) − 8̄(τ − 1τ)

1τ
= (1 + c)Xc ∂8

∂ X

∣∣∣∣1
0

= (1 + c). (30)

To arrive at this relation we have employed Eqs. (3)–(4) again. Notice that besides the
restriction thatτ ≥ 1τ, τ and1τ are arbitrary quantities. Then, without loss of generality
we can assume that1τ = τ in Eq. (30). Next, using the initial condition, Eq. (2), the above
equation reduces to the exact value,8̄(τ ) = (1 + c)τ = φ̄(τ ).

Finally, comparing Eqs. (28) and (30), after introducing Eq. (29), leads to

ϑ̄(τ, 1τ) = (1+c)
∫ 1

0
ϑ(ξ, τ, 1τ)ξ c dξ = 0.
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